cis,cis-1,3-Bis(styryl)azulene

By Lawrence Fallon III and Herman L. Ammon*
Department of Chemistry, University of Maryland, College Park, Maryland 20742, U.S.A.

and Arthur G. Anderson Jr,* James O. Currie Jr and Russel A. Labar
Department of Chemistry, University of Washington, Seattle, Washington 98195, U.S.A.

(Received 30 August 1973; accepted 8 October 1973)

Abstract

C}_{26} \mathrm{H}_{20}\); M.W. $332 \cdot 45$; monoclinic, space group $A 2 / a ; a=15.155$ (3), $b=12 \cdot 722$ (2), $c=12.539$ (2) $\AA, \beta=104.49(1)^{\circ} ; D_{c}=1.176 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$. Mo $K \alpha$ diffractometer data. Final $R=0 \cdot 043$. The molecule lies on the twofold axis coincident with the $\mathrm{C}(2)-\mathrm{C}(6)$ vector. Bond lengths in the $\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}$ portions of the molecule have typical $s p^{2}-s p^{2}$ single and double bond values. The ($\mathrm{C}=\mathrm{C}$)-azulyl and ($\mathrm{C}=\mathrm{C}$)-phenyl twist angles are $25 \cdot 9$ and 43.3° respectively.

Introduction. A green platelet of (I), crystallized from n-heptane (Currie, 1970) and with approximate dimensions $0.4 \times 0.4 \times 0.1 \mathrm{~mm}$ was mounted parallel to b. Precession and Weissenberg photographs established the space group. A Picker FACS-I diffractometer and Mo radiation (graphite monochromator, $K \alpha, \lambda=$ $0.71069 \AA$) were used for lattice parameter and intensity measurements. The final unit-cell parameters were obtained by a least-squares fit to the 2θ values of 12 reflections manually centered at $\pm 2 \theta$.

(I)

Intensities were measured by the $2 \theta-\theta$ scan method with a 2θ rate of $0.5^{\circ} \mathrm{min}^{-1}$, and with 40 s backgrounds. Three standard intensities were counted at 50 -reflection intervals. 2968 reflections were measured to a maximum 2θ of 50° giving 1657 unique data (excluding 83 systematically absent); 1377 of these were 3σ above background and classified 'observed'. Absorption corrections were not made. The structure was solved by the routine application of direct methods using the X-RAY System (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) subprogram PHASE. An E map computed with 289 phases ($147+, 142-$) gave initial coordinates for the 14 unique C atoms. The structure refinement was by full-matrix least-squares, minimizing the function $\sum w\left(F_{o}-F_{c}\right)^{2}$, where $w=1$ for

[^0]$F_{o} \leq 20$ and $w=20 / F_{o}$ for $F_{o}>20$ [Hughes (1941) scheme]. The calculations used anisotropic temperature factors for C and isotropic terms for H (initially located in a difference map), and included an isotropic secondary extinction correction $\left[r^{*}=0.00038\right.$ (1), equation 22 in Larson (1970)]. Atomic scattering factors for C were obtained from International Tables for X-ray Crystallography (1968) and for H from Stewart, Davidson \& Simpson (1965). In the final least-squares cycle the average and maximum shifts were 0.3 and $1 \cdot 5 \sigma$. The final $R\left(\sum\left|F_{o}-F_{c}\right| / \sum F_{o}\right)$ and weighted R $\left(\sum w\left(F_{o}-F_{c}\right)^{2} / \sum w F_{o}^{2}\right)$ factors were 0.043 and $0.051 . \dagger$ The final atomic parameters are listed in Table 1.

Discussion. The compound was investigated to determine the extent of nonplanarity of the cis, cis-azulyl-C=C-phenyl structure for possible correlation with visible and n.m.r. spectral data. An ORTEP-II (Johnson, 1971) drawing with bond lengths and angles is given in Fig. 1. While the azulene, $\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}$ and benzene moieties are individually planar within experimental error, the three groups are not coplanar with each other. The nonplanarity can be easily seen in Fig. 2 , which has been drawn looking down the C_{2} axis and which clearly illustrates the Z-shape of the molecule. The azulyl- $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$-phenyl twist angles are 25.9 and $43 \cdot 3^{\circ}$, respectively, and the total azulene-benzene twist is $53 \cdot 4^{\circ}$. These twists, which arise from steric interactions between the two phenyls and between the phenyls and the $\mathrm{C}(2)-\mathrm{H}(2)$ portion of the azulene ring, are sufficiently large to make all of the phenyl \cdots phenyl and azulyl \cdots phenyl contacts larger than the corresponding van der Waals distances. The distance between the two phenyl rings planes is $c a .5 \cdot 0 \AA$. The steric pressures are slightly reduced by the $c a .10^{\circ}$ increase of the two $\mathrm{C}-\mathrm{C}=\mathrm{C}$ angles, $\mathrm{C}(9)$ and $\mathrm{C}(10)$, over the normal trigonal 120° value, and by the exocyclic bond angle differences at $\mathrm{C}(1)$ and $\mathrm{C}(11) . \mathrm{C}-\mathrm{C}=\mathrm{C}$ angles in the 130° range have been found in trans-stilbene (Robertson \& Woodward, 1937), 1,2-dicyano-trans-stil-
\dagger A table of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30242 (20 pp., 1 microfiche). Copies of this table may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. Fractional coordinates, temperature factors $\left(\AA^{2}\right)$ and e.s.d.'s (in parentheses)
The form of the anisotropic temperature factors is $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\ldots 2 U_{23} k l b^{*} c^{*}\right)\right]$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
C(1)	$0 \cdot 1539$ (2)	0.7780 (2)	$0 \cdot 9583$ (2)	0.044 (1)	0.049 (1)	0.047 (1)	$0 \cdot 0007$ (9)	0.0039 (9)	-0.0012 (9)
C (2)	$0 \cdot 250$	0.7157 (3)	1.000	0.052 (2)	0.042 (2)	0.052 (2)	0.000	0.002 (1)	$0 \cdot 000$
C(6)	0.250	$1 \cdot 1240$ (3)	1.000	0.086 (3)	0.045 (2)	0.075 (2)	$0 \cdot 000$	0.013 (2)	$0 \cdot 000$
C(7)	$0 \cdot 1470$ (2)	1.0774 (2)	$0 \cdot 9520$ (2)	0.077 (2)	0.050 (1)	0.067 (2)	0.014 (1)	0.012 (1)	$0 \cdot 004$ (1)
C(8)	$0 \cdot 1189$ (2)	0.9713 (2)	$0 \cdot 9410$ (2)	0.056 (1)	0.053 (1)	0.051 (1)	$0 \cdot 008$ (1)	$0 \cdot 008$ (1)	-0.001 (1)
$\mathrm{C}(8 A)$	$0 \cdot 1884$ (2)	$0 \cdot 8844$ (2)	$0 \cdot 9733$ (2)	0.047 (1)	0.047 (1)	0.042 (1)	$0 \cdot 0020$ (9)	$0 \cdot 0070$ (9)	-0.0008 (9)
C(9)	$0 \cdot 0355$ (2)	$0 \cdot 7445$ (2)	0.9151 (2)	0.044 (1)	0.059 (1)	0.061 (1)	-0.001 (1)	0.002 (1)	-0.002 (1)
$\mathrm{C}(10)$	-0.0061 (2)	$0 \cdot 6511$ (2)	0.8727 (2)	0.046 (1)	0.058 (1)	0.064 (1)	-0.003 (1)	0.005 (1)	-0.004 (1)
$\mathrm{C}(11)$	0.0534 (2)	$0 \cdot 5588$ (2)	0.8441 (2)	0.047 (1)	0.056 (1)	0.046 (1)	-0.004 (1)	-0.0022 (9)	-0.003 (1)
$\mathrm{C}(12)$	$0 \cdot 1427$ (2)	$0 \cdot 5672$ (2)	0.7931 (2)	0.053 (1)	0.072 (2)	0.054 (1)	-0.004 (1)	0.004 (1)	-0.006 (1)
C(13)	$0 \cdot 1907$ (3)	$0 \cdot 4778$ (3)	0.7608 (3)	0.064 (2)	0.103 (3)	0.067 (2)	0.009 (2)	0.007 (1)	-0.021 (2)
C(14)	$0 \cdot 1511$ (3)	$0 \cdot 3796$ (3)	0.7791 (3)	0.094 (2)	0.079 (2)	0.091 (2)	0.022 (2)	-0.003 (2)	-0.026 (2)
C(15)	0.0637 (3)	$0 \cdot 3710$ (3)	0.8296 (3)	$0 \cdot 104$ (3)	0.057 (2)	0.091 (2)	-0.002 (2)	0.003 (2)	-0.006 (2)
C(16)	$0 \cdot 0143$ (2)	$0 \cdot 4590$ (2)	$0 \cdot 8605$ (2)	0.071 (2)	0.060 (2)	0.062 (1)	-0.011 (1)	0.006 (1)	-0.003 (1)

Table 1 (cont.)

	x	y	z	U
H(2)	$0 \cdot 250$	$0 \cdot 639$ (3)	1.000	0.050 (8)
H(6)	$0 \cdot 250$	$1 \cdot 205$ (3)	1.000	0.07 (1)
H(7)	0.081 (2)	$1 \cdot 124$ (2)	0.920 (2)	0.077 (8)
H(8)	0.033 (2)	0.955 (2)	0.902 (2)	0.064 (7)
H(9)	-0.024 (1)	0.801 (1)	0.919 (1)	0.086 (5)
H(10)	-0.094 (1)	$0 \cdot 643$ (1)	$0 \cdot 860$ (1)	0.092 (5)
H(12)	$0 \cdot 169$ (2)	$0 \cdot 643$ (2)	$0 \cdot 779$ (2)	$0 \cdot 072$ (8)
H(13)	$0 \cdot 254$ (3)	0.485 (3)	0.720 (3)	$0 \cdot 11$ (1)
H(14)	$0 \cdot 186$ (3)	$0 \cdot 314$ (3)	0.753 (3)	$0 \cdot 13$ (1)
H(15)	0.032 (3)	0.306 (3)	$0 \cdot 841$ (3)	$0 \cdot 11$ (1)
H(16)	-0.042	$0 \cdot 454$ (2)	$0 \cdot 902$ (2)	0.069 (8)

bene (Wallwork, 1961), 1,2-difluoro-trans-(4'-bromostilbene) (Chetkina \& Gol'der, 1967) and 1,2-difluoro-trans-(4'-methylstilbene) (Chetkina \& Gol'der, 1968). The 122° phenyl- $\mathrm{C}=\mathrm{C}$ angle in diethylstilbestrol [1,2-diethyl-trans-($4^{\prime}, 4^{\prime \prime}$-dihydroxystilbene)](Weeks, Cooper \& Norton, 1970) is presumably due to the steric bulk of the ethyl group which limits the opening of this angle. The phenyl- $\mathrm{C}=\mathrm{C}$ twist angles in the stilbenes range from 63° in diethylstilbestrol down to 3° in trans-stilbene itself. In molecules in which the steric crowding is greater than in trans-stilbene, both the $\mathrm{C}-\mathrm{C}=\mathrm{C}$ angle

Fig. 1. ORTEP drawing with the C atoms represented as 50% ellipsoids and with $0 \cdot 1 \AA$ spheres for H . Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are superimposed.

Fig. 2. ORTEP view approximately parallel to the twofold axis.
and phenyl $-\mathrm{C}=\mathrm{C}$ twist distortions are required for strain relief (Harnick, Herbstein, Schmidt \& Hirshfield, 1954).

Bond lengths in the azulene ring are normal and in good agreement with other azulenes: e.g. azulene-sym-trinitrobenzene complex (Hanson, 1965), azulene-1,3-dipropionic acid (Ammon \& Sundaralingam, 1966) and azulene [elcetron diffraction, Bastiansen \& Derissen (1966)]. The benzene distances show the typical decrease going from the point of connection, $\mathrm{C}(11)$, to the opposite side of the ring, $C(14)$, caused by (uncorrected) thermal-motion effects. The $\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}$ distances, $1 \cdot 468-1 \cdot 348-1 \cdot 470 \AA$, have normal values for Csp ${ }^{2}-\mathrm{C} s p^{2}$ single and double bonds and are reminiscent of the corresponding lengths in butadiene, 1.463 and $1.341 \AA$ (Kuchitsu, Fukuyama \& Morino, 1968). Assuming that trans,trans-1,3-bis(styryl)azulene would be almost totally planar and similar to trans-stilbene, and that the cis, trans isomer would have one planar and one twisted azulyl- $\mathrm{C}=\mathrm{C}$-phenyl portion, the structures of the trans, trans, cis, trans and cis, cis compounds agree well with structural ideas deduced from the visible absorption maxima of 693,673 and 653 nm , respectively. The decrease in azulene...benzene conjugation from the most planar trans, trans to the least planar cis, cis coincides with $693 \cdots 653 \mathrm{~nm}$ decrease in the visible maxima. The values of $\delta 8.28$ (trans, trans),
8.08 (cis, trans), and 7.75 ppm (cis, cis) assigned to the $\mathrm{H}(2)$ chemical shifts in the n.m.r. spectra (LaBar, 1971) also are in agreement with the results of the present study.

None of the intra- or intermolecular contacts are shorter than the corresponding van der Waals distances.

This work was supported at the University of Maryland by the National Science Foundation (Nos. GP15791 and GP-37528), and in part through the facilities of the Computer Science Center. The work at the University of Washington was supported in part by the National Science Foundation (Nos. GP-9293 and GP-24623) and the American Chemical Society Petroleum Research Fund.

References

Ammon, H. L. \& Sundaralingam, M. (1968). J. Amer. Chem. Soc. 88, 4794-4799.
Bastiansen, O. \& Derissen, J. L. (1966). Acta Chem Scand. 20, 1319-1324.
Chetkina, L. A. \& Gol'der, G. A. (1967). Zh. Strukt. Khim. 8, 106-111.
Chetkina, L. A. \& Gol'der, G. A. (1968). Zh. Strukt. Khim. 9, 250-257.
Currie, J. O. Jr (1970). Ph. D. Thesis, Univ. of Washington.
Hanson, A. W. (1965). Acta Cryst. 19, 19-26.
Harnik, E., Herbstein, H., Schmidt, G. M. \& Hirschfeld, F. L. (1954). J. Chem. Soc. pp. 3288-3294.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737-1752.
International Tables for X-ray Crystallography (1968). Vol. III, 2nd ed., pp. 201-209. Birmingham: Kynoch Press.
Johnson, C. K. (1971). ORTEP-II. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Kuchitsu, K., Fukuyama, T. \& Morino, Y. (1968). J. Mol. Struct. 1, 463-479.
LaBar, R. A. (1971). Ph. D. Thesis, Univ. of Washington.
Larson, A. C. (1970). Crystallographic Computing. Edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Robertson, J. M. \& Woodward, I. (1937). Proc. Roy. Soc. A 162, 568-583.
Stewart, J. M., Kruger, G. J., Ammon, H. L. Dickinson, C. \& Hall, S. R. (1972). The X-RA Y System of Crystallographic Programs. Technical Report 192, Computer Science Center, Univ. of Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wallwork, S. C. (1961). Acta Cryst. 14, 375-378.
Weeks, C. M., Cooper, A. Norton, D. A. (1970). Acta Cryst. B26, 429-433.

[^0]: * Address correspondence to these authors.

